- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ashraf, M (1)
-
Chudzinski, P. (1)
-
Holmes, N. (1)
-
Jani, R. (1)
-
Johnston, C. (1)
-
Kohanoff, J. (1)
-
Liu, X. (1)
-
Nishiguchi, M K (1)
-
Norton, B. (1)
-
Orisakwe, E. (1)
-
Pérez‐Ferrer, P A (1)
-
Qu, M. (1)
-
Rodrigues, M (1)
-
Stella, L. (1)
-
Troncoso, J (1)
-
Troncoso, J. (1)
-
Yazawa, K. (1)
-
Yin, H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
King, K (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
King, K (Ed.)ABSTRACT Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure ofSepiola atlantica(Cephalopoda: Sepiolidae) and theirVibriosymbionts (V. fischeriandV. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep‐sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for bothS. atlanticaandVibriobacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast,Vibriosymbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid‐Vibrioassociation, abiotic factors can be a major selective force for determining population structure for one of the partners.more » « less
-
Stella, L.; Johnston, C.; Troncoso, J.; Chudzinski, P.; Orisakwe, E.; Kohanoff, J.; Jani, R.; Holmes, N.; Norton, B.; Liu, X.; et al (, CERI/ITRN 2022)Because of the thermoelectric (TE) effect (or Seebeck effect), a difference of potential is generated as a consequence of a temperature gradient across a sample. The TE effect has been mostly studied and engineered in semiconducting materials and it already finds several commercial applications. Only recently the TE effect in cement-based materials has been demonstrated and there is a growing interest in its potential. For instance, a temperature gradient across the external walls of a building can be used to generate electricity. By the inverse of the TE effect (or Peltier effect), one can also seek to control the indoor temperature of a building by biasing TE elements embedded in its external walls. In designing possible applications, the TE properties of cement-based materials must be determined as a function of their chemical composition. For instance, the TE properties of cement paste can be enhanced by the addition of metal oxide (e.g., Fe2O3) powder. In this paper, a single thermoelectric leg is studied using the finite element method. Metal oxide additives in the cement paste are modelled as spherical inhomogeneities. The thermoelectric properties of the single components are based on experimental data, while the overall thermoelectric properties of the composites are obtained from the numerical model. The results of this numerical study are interpreted according to the effective medium theory (EMT) and its generalisation (GEMT).more » « less
An official website of the United States government

Full Text Available